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I. Php:  Condens. Mater 4 (1992) U93-LZ98. Printed in be  UK 

LETFER TO THE EDITOR 

The parallel critical field of a type-I1 superconducting 
cylinder 

N C Constanthou, M Masale and D R Tdey 
Lkpartmenl of Physics, Unklsity of &a, Colchester CO4 3SQ, UK 

Reczived 10 February 1592 

AbstrrtcL The analogue of the surface nucleation field Hd b calculated for a supercon- 
ducting cylinder in a magnetic field parallel to its axis Ibr small ndius, on the scale of 
the mherence length, supercnnductivity nucleates uniformly acmss the cylinder, while for 
large radius a surface sheath nucleates at the outer perimeter, the b& of the cylinder 
remaining nomal. The wansition b e e n  these two IimiIs is seen ap a succession of flux 
entry p i n &  each corresponding to an increase by unity in the magnitude of the fluxoid 
quantum number. 

The prediction by Saint-James and de Gennes (1963) that superconductivity would 
appear at the surface of a type-I1 superconductor in a parallel field H,= 1.69H,, 
where H, is the bulk critical field, has been verified in subsequent experiments, 
for example that of Gygax and Kropschot (1964). The derivation is based on the 
Ginzburg-Landau (GL) theory, and the appearance of the surface sheath at Hr3 is 
a consequence of the boundary condition that the derivative of the wave function 
Q is zero at the surface. The surface sheath is suppressed if the superconductor 
is plated with a normal metal because the proximity effect between the normal and 
superconducting metals modihes the GL boundary condition; the theory is given by 
Hurault (1966). 

A natural extension of the Saint-James-de Gennes calculation is to a thin film 
in a parallel field. As was first appreciated by Sutton (1966), the nature of the 
superconducting state just below Ifr3 depends on the dimensionless ratio d/E(T) ,  
where d is the thickness of the film and c(T) is the coherence length. For d/E(T) 
small, U‘ is constant across the am. At a critical value of d / E ( T ) ,  however, it 
becomes possible, qualitatively speaking, for a vortex line to fit into the hlm, with the 
result that P changes phase across the film. This ‘flux entry’ effect is clearly seen in 
tunnelling data. A full theoretical and experimental study of type-I1 films in a parallel 
field was carried out by Guyon Q ul (1967). 

With improvements in material preparation techniques, one can envisage super- 
conducting cyliqdes with radius R comparable with E(T), either free standing or as 
part of a composite. Like the Schrodinger equation for an electron in a wire in the 
presence of a parallel field (Landau and Lifshitz 1985, Constantinou af 1992), the 
linearized GL equation for a cylinder in a parallel field can be solved exactly in terms 
of the confluent hypergeometric function. We present this solution here and apply it 
to the calculation of the critical field for a free-standing cylinder. 
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In the usual notation pYley and Tilley 1990) the linearized GL equation for Q is 
I 

(1/2p)(-i/iV - 2eA)’Q + or@ = 0 (1) 

where p is the electronic mass and the temperature enters via or: 

Q = Q ~ ( T  - T,) (2) 

where oro is amstant and T, is the hitical temperature. We apply this to a cylinder 
of radius R with magnetic field B along the axis. The vector potential can be taken 
as 

A, = A, = O  A+ = 4 Br. (3) 

Q = X(r)exp(im+) (4) 

The azimuthal dependence of \y is simple: 

and, as for the electron problem (Constantinou er a2 I=), the equation for the radial 
part reduces to 

Cz dZx/dC2 -k CdX/dC + Il4C/tw, - + m)’]x = 0 (5) 

where wc is the cyclotron resonance frequency for a particle of mass p and charge 
2% 

wc = 2 e B / p  (6) 

and C is defined by 

{ = r z / 2 a ;  (7) 

where 

a,” = /i/ZeB 

defines the magnetic iength a, for a particle of charge 2e. Equation ‘(5) is brought 
into canonical form by the substihltion (Landau and Lihhitz 1985) 

x = exp(-C/2)C””2W(C). (9) 

The equation for W is Kummer’s equation for the confluent hypergeometric function 
(Abramowitz and Stegun 1965): 

Cd2W/dC2+(b-C)dW/dC-aW=0 (10) 

where 
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and 

b = la1 + 1 .  (12) 

The solution of (10) is written in standard notation as 

W(C) = W a ,  b, C). (13) 

The second solution U ( a ,  b, C) is discarded since it is divergent at C = 0. 

which leads to 
The boundary condition at the Outer radius P = R oI“ the cylinder is dQ/dr  = 0, 

$(lm1/2f- 1 ) M ( a ,  b, 2f)  + M’(a ,  b, 2f) = 0 (14) 

and 

f = Ra/4a: 

is the dimensionless parameter used by Guyon et a1 (1967). 
Equation (14) is the eigenvalue equation to determine the critical field 8 , .  As 

in the determination of H ,  and He, for example, the ‘eigenvalue’ la1 is effectively 
the temperature. The interpretation of (14) is therefore as follows. We regard la1 
as fored, then for a given m equations (U), (12) and (14) are solved for B. The 
maximum B (as a function of m) is the critical field B,. 

It may be noted that this problem involves two length scales, the magnetic length 
a, defined in (8) and the coherence length E(T) defined by 

€2 = ti2/2/4al = h2/[2pao(Tc  - T ) ] .  (16) 

Likewise there are two energy scales la1 and tW,. The ratios satisfy 

2lal/hw, = a:/€’.  (17) 

Following Guyon et a1 (1967), we reduce the problem to dimensionless form by 
defining temperature and field parameters e and f, where 

c = R2/4E2 = plalR2/2ti2 (18) 

and f is given by (IS), which is also written as 

f = BR2?r/2Q0 (19) 

where a0 = h / 2 e  is the flux quantum. The solution m a y  be represented as a 
universal curve of E versus, f. 

The equations defining the numerical problem are the eigenvalue equation, equa- 
tion (14), the definition of b, equation (12), and the definition of a, equation (11). 
In terms of E and f, the latter is 

(20) a = l - l ,  2 2 l f + 4 1 m l + 4 m .  
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Since f appears in both (14) and (20) whereas c appears only in (20), a convenient 
numerical strategy is as follows. First fix f, then find E(m); the minimum of c(m) 
is the required point on the aitical curve. Now b depends only on Iml, so (14) 
determines the same value of a for positive and negative m. It then follows from the 
definition of a, equation (Il), that 

.(m) = e(-m) + 2m f m = O,fl , r t2 , .  . . . (21) 

Only the minimum value of e has physical significance, so (21) shows that only 
negative values of m need be considered. 

It is helpful to start with the limiting solutions for large and small R. For large 
R the curvature of the cylinder is unimportant and the ordinary surface-sheath result 
H ,  = 1.69 Ha h recovered; in the present units this is 

e=0.592f f o r c B l .  (22) 

For small R, the solution must correspond to m = 0,  since for m # 0 the kinetio 
energy-type contribution to the Landau energy diverges as R -+ 0. Since the small-C 
behaviour of the confluent hypergeometric function is m ( a ,  1, C) - constant as 
C - 0,  it follows from (9) that the radial part X ( T )  is almost constant. Equation 
(5) can then be integrated across the cylinder; the limits are C = 0 corresponding to 
T = 0 and C = 2f corresponding to T = R. Thus 

which leads to 

(24) 

compared with E = f2/3 for a film in a parallel field. 
We have solved (14) numerically using standard software and our own subroutine 

for M. The resulting paph  of e versus f is shown in figure I. For small f ,  m = 0 
and (24) applies. There is then a succession of flux entry points at each of which 
m decreases by 1. The definitions of the reduced variables E and f mean that the 
vertical scale is effectively temperature and the horizontal scale is magnetic field. The 
radius R scales both axes, so the value of the radius determines which section of the 
c-f plot is experimentally accessible. An order of magnitude for values of R follows 
from (18): c = 1 corresponds to R = 2e(T), where €(T) is the usual coherence 
length. The present calculation is relevant to type-I1 superconductors, in which <(T)  
is relatively small, so in practice a value of R in the range 10 to 50 nm might be 
needed for the present cylinder nucleation fields to be distinguished from the ordinary 
Hc3 of a flat surface. 

The nature of the state just below the critical field follows from (S), (13) and the 
small-C behaviour 

M(a, b,  C) N 1 for small C. (E) 
This gives 
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FWrr L Graph of E = plalR2/2h2 m u s  f = 
aBR2/2Q,.  ?he azimuthal quantum number m 
(fluxoid number) b 0 for small f and decreases by 
1 at each flux entry pomt (derivative discontinuity). 
The giwn wlve encompasses values of m telween 
0 and -7. 
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Figure Z Radial dependence of he radial part of 
the wave hmcti~n, x(r), far (a) m = 0 ,  f = 
0.5; ( b )  m = -1, f = 1.5; (c) m = -2, f = 
2.0; ( d )  m = -10, f = 7.0. The normalization 
of x(r) is arbitrary. 

so, even for Iml = 1, x is rather small at the centre of the cylinder. This is confirmed 
by figure 2 showing the radial dependence of x for a few values of m. It may be 
mentioned that the normalization of x is not determined by the present calculation; 
further analysis including the non-hear term in the GL equation would be needed 
for this. It is helpful also to consider the expression for the supercurrent: 

J = -(ieh/p)(@* V@ - @ V@") - ( 4 e 2 / ~ ) l @ l Z A .  (27) 

It follows from (3) and (4) and the fact that X ( P )  is real that only the azimuthal 
component .J9 is non-zero; substitution of (3) and (4) in (27) gives 

J,+ = - (2ex2/p)(hlml/v  + eBr) .  (28) 

Because m is negative, the two terms in (27) have the same sign. 
Equation (28) confirms the pciture given by figure 2 For small radius (on the 

scale of the coherence length) the superconducting phase nucleates uniformly across 
the cylinder. As R/C(T) increases, the critical field corresponds to increasing (neg- 
ative) values of m. The order parameter x(r )  and the current J+ are increasingly 
conentrated at the outer radius of the cylinder with the interior region effectively in 
the normal phase, x Y 0.  

We conclude with a brief review and comments on possible extensions. The 
physical results are summarized in figure 1. Fbr a cylinder of given radius R the 
vertical axis E is proportional to T, - T; decreasing T corresponds to increasing 
the coherence length E(T) and increasing E = R2/4F2. As E increases, the critical 
field corresponds to increasing values of the fluxoid quantum number Iml. For a 
moderately large value of Iml the superconducting state just below the critical field 
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is described as a supercurrent of thickness about ((7') around the perimeter of the 
cyimder, with the interior region normal. This is hardly surprising since the field is 
larger than the Critical value He for superconductivity to appear in the bulk. 

For the quantum-mechanical problem, Makar et U! (1991) give a discussion of 
a hollow cylinder. This could also be done for the present problem, the boundary 
condition dW/dr = 0 being applied at the inner radius 4 as well as the outer radius 
R. The solution for would be a linear combination pM(a, b, z )  + pU(a, b, z) .  

For a cylinder in a non-superconducting metallic matrix the boundary condition 
is modified; to be precise the condition of zero gradient is replaced by 

where 6 is an extrapolation length (de Gennes 1966). This would lead to a modifica- 
tion of (14), but the calculation of the critical field is tractable. 
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